
An Algorithm for the Detection
and Construction of Monge Sequences

Noga Alon*
School of Mathematical Sciences
Suckler Faculty of Exact Sciences
Tel Aviv University
Tel Aviv, Israel

Steven Cosares
Be&or
3 Corporate Place
Piscatawa y, NJ. 08854

Dorit S. Hochbaum’
School of Business Administration and IEOR Department
University of California, Berkeley
Berkeley, California 94720

and

Ron Shamir *
School of Mathematical Sciences
Suckler Faculty of Exact Sciences
Tel Aviv University
Tel Aviv, Israel

Dedicated to Alan J. Hoffman on the occasion of his 65th birthday.

Submitted by Uriel 6. Rothblum

ABSTRACT

We give an efficient algorithm which determines whether a condition due to
Hoffman (1963) is satisfied by the cost matrix of a transportation problem. In case the
condition is satisfied, our algorithm generates a permutation of the matrix entries

*Supported in part by Allon Fellowship and by a Bat Sheva de Rothschild grant.
‘Supported in part by the National Science Foundation under grant ECS-G-01988 and the

Office of Naval Research under grant NGOO 1488-KXI377.

*Supported in part by Allon Fellowship.

LINEAR ALGEBRA AND ITS APPLICATIONS 114/115:669-680 (1989)

B Elsevier Science Publishing Co., Inc., 1989

669

655 Avenue of the Americas, New York, NY 10010 00243795/89/$3.50

670 NOGA ALON ET AL.

(called a Monge sequence), which allows for the solution of any problem with that
cost matrix in linear time, by way of a “greedy” algorithm. This is the first polynomial
algorithm for this problem. The running time of our algorithm is better than that of
the best known algorithms for the transportation problem, and thus it can be used as a
preliminary step in solving such problems without an increase in the overall complex-
ity.

1. INTRODUCTION

Hoffman [lo] proved a necessary and sufficient condition for a trans-
portation problem to be solvable by a greedy algorithm. The greedy algo-
rithm is given a permutation (called a Monge sequence) of the decision
variables for the problem and maximizes each variable in turn. It is much
faster than standard algorithms for the transportation problem. The applica-
bility of Hoffman’s condition has since been established for various families of
problems [2, 9, 10, 151 in order to exploit the faster algorithm. Hoffman’s
condition, though, is not constructive, since it requires prior knowledge (or
guessing) of the Monge sequence. Until now, no polynomial algorithm has
been known for checking whether a transportation problem satisfies
Hoffman’s condition, and for constructing a Monge sequence for it in case it
does 112). Previously, these questions had to be answered separately for every
family of transportation matrices.

In this note we give an algorithm which tests whether a Monge sequence
exists for a given transportation cost matrix, and constructs such a sequence if
one exists. A straightforward implementation of the algorithm requires
0(m2n2) time and 0(mn) space for an m X n transportation matrix. A more
sophisticated implementation reduces the running time to 0(msn log n) at
the cost of increasing the space requirement to O(m%), where 711 can be
chosen as the smaller dimension of the matrix. The running time of our
algorithm is better than that of the best known strongly polynomial algorithm
for the transportation problem by a factor of at least n/m > 1, and thus it
can be used as a preliminary step towards solving such problems without an
increase in the overall complexity. We also make some observations as to
when such a sequence exists, and discuss the applicability of the algorithm to
practical situations.

2. PRELIMINARIES AND BACKGROUND

Given that some commodity must be shipped from m different “source”
locations to satisfy the demand at n “destination” locations, the transporta-

MONGE SEQUENCES 671

tion problem is defined as the task of finding the appropriate amounts to
send from each source i directly to each destination j, in a way that
minimizes the total shipping cost. Formulated as a linear program, the
transportation problem is to find values for xii, i = 1,. . . , m, j = 1,. . . , n,
where

i Xij=ai, igIxij=bj>
j-1

xii 2 0, i = l,...,m, j=l,,..,n,

such that C;, 1Cy_ lcij~ij is minimized. Here, a i is the amount of the
commodity available at source i, and bj is the amount required at destination
j, where Cy_ lai = Eys,bj is assumed. C is a matrix with m rows and n
columns, whose (i, j)th element, cii, is the cost per unit of shipping from
source i to destination j.

This problem was first described by Hitchcock [8] and Kantorovich [13]
and has been the subject of intensive study (see, e.g. [4, 14, 191). Since it can
be represented as a minimum cost flow problem, there exist many efficient
solution techniques for the problem. Most of the algorithms solving it are
based either on simplex method operations or on flow augmentations in the
corresponding digraph. The currently fastest strongly polynomial algorithm
for the transportation problem is due to Orlin [181 and requires O(n log n)
solutions of shortest path problems on graphs with n + m vertices and nm
edges. The fastest (weakly) polynomial algorithm for the problem is due to
Ahuja, Orlin, Stein, and Tajan [l] and has running time 0(n2m log nC),
where C is the largest cost in the matrix, [17].

It is well known that the special structure of the problem makes it
possible to obtain an initial (basic) feasible solution by taking the indices of
the variables in any order, say ((i,, j,), (i,, j,), . . . , (i,,, j,,)), and perform-
ing the following linear time algorithm:

Let di=ai, i=l,..., m, hj=bj, j=l,..., n.
For k = 1,. . . , mn do:

Set X& +- min(cii,, Ljk)

$ik + $ik - “ikjk

b,+- bjli- x. ‘,I*
end

(i.e., each variable, in its turn, takes on the largest feasible value possible).
Examples of this “greedy” technique include the “northwest corner” method
and the “minimum cij” rule (see, e.g., [7]). While a sophisticated variable
ordering rule may be useful in determining a “good” solution, it cannot, in
general, guarantee an optimal solution.

672 NOGA ALON ET AL.

In [lo], the author provides necessary and sufficient conditions for an
ordering of the variables which guarantees that the greedy technique pro-
vides an optimal solution to the transportation problem, for any values
of (a,,..., a,,) and (b,, . . . , b,). Namely, the permutation S =

((ii, j,),(i,, j,),...>(L”, j,,)) of the indices of the cost matrix must satisfy

For every 16 i,r< m, 16 j,s< n, whenever (i, j)
precedes both (i, s) and (r, j), the corresponding entries
in matrix C are such that clj + cry < c,,, + crj.

An ordering satisfying condition (Cl) is called a Mange sequence for the
matrix C, named after the mathematician who made similar observations
about greedy solution techniques as long ago as 1781 [16]. (We have deviated
slightly from Hoffman’s terminology for the sake of brevity.)

Given a transportation problem with cost matrix C, we would like to find
a Monge sequence for it, if one exists. By Hoffman’s theorem, obtaining such
a sequence reduces the time complexity of any subsequent solution of the
problem to linear. Therefore, the sequence would be useful in many practical
applications of the transportation problem. It is particularly attractive in
cases where the cost matrix is fixed but the supply and demand vectors vary
over time (e.g. planning a daily transportation program where the demands
and supplies change daily, but the per-unit shipping costs remain fixed for a
long period). In these situations, identification of the sequence greatly
accelerates and simplifies repeated solutions.

In this paper we study the problem of constructing a Monge sequence for
a transportation matrix or showing that none exists. We describe two polyno-
mial algorithms for that problem. While this general problem has not been
solved before [12], certain special cases involving assignment problems have
been studied, in connection with polynomially solvable special cases of the
traveling salesperson problem. In that context, Gilmore and Gomory (51
addressed n x n assignment matrices D (cf. [4]), satisfying (among other
conditions)

dij + d,, < di, + dri for every i<r and j<s.

Chandrasekaran [3] observed that such matrices can be recognized in
polynomial time even if the rows and the columns of the matrix have been
permuted, and the two n-element permutations can be polynomially recon-
structed. Gilmore et al. [S] made a similar observation earlier, for the case
where only the columns have been permuted. (In their case there are
additional conditions of monotonicity along each row, which further simplify

MONGE SEQUENCES 673

the problem.) The solution techniques developed for constructing the n-ele-
ment permutations in the assignment problem are, however, tailored for that
special case. They are not suitable for our more general problem, in which
one wishes to construct an nm-long permutation for a transportation problem.

3. OBSERVATIONS

A natural question that arises is whether every matrix C gives rise to a
Monge sequence. Clearly, such a sequence exists for every matrix of dimen-
sion 1 X n. It turns out that every 2 X n matrix also has such a Monge
sequence, but not every larger matrix does:

OBSERVATION 3.1. There is a Monge sequence for every 2 X n cost
matrix.

Proof. Renumber the columns of the matrix so that cii - c2i < cl2 - cz2
< ... <Gin - CZn. The ordering ((1,1),(1,2) ,..., (l,n),(2,1) ,..., (2,n)) is a
Monge sequence for C, because cri + czi < cij + cpi for all i < j, implying
that condition (Cl) holds for every item. n

NOTE. A somewhat surprising fact is that in the 2 X n case, the reversed
sequence ((2, n),(2, n - l), . . . (1,l)) is also a Monge sequence. This, of course,
does not hold in general.

OBSERVATION 3.2. For every m, n such that min(m, n) > 3, there exist
m x n cost matrices which do not have a corresponding Monge sequence.

Proof. Consider the 3 X3 identity matrix. A simple check shows that
none of the nine elements in the matrix can appear before the remaining
eight in a Monge sequence, without violating condition (Cl). Consequently,
for min(m, n) > 3, no m x n matrix containing a 3 x 3 identity matrix as a
submatrix has a Monge sequence. n

4. A SIMPLE ALGORITHM

In this section we describe a new simple polynomial algorithm for the
detection and construction of a Monge sequence in a transportation matrix.
First, we need some notation: When i z r and j f s in condition (Cl), the
four entries (i, j), (i, s). (r, j), (r, s) determine a 2 ~2 matrix which we call a

674 NOGA ALON ET AL.

quadruple. This matrix has two diagonals, each containing two entries,
namely ((k j), (r, s)) and ((i, s), (r, j)). If cij + c_ < cis + crj, then
((i, j), (7, s)) is called a s-mull diagonal of that quadruple. Both diagonals will
be called small if equality holds.

THE ALGORITHM.

lnitialiurtion:

1. Build a graph whose nodes correspond to the matrix entries. Two nodes
are connected by an edge if they are on the strictly larger diagonal in the
quadruple which they share. (Nodes which correspond to entries in the
same row or column are not connected by an edge.)

The iterative step:

2. If there is a node (i, j) of degree zero (an isolated node) in the graph,
place it next in the sequence, and eliminate from the graph all the edges
which connect an element from row i with an element from column j.
[In every quadruple which includes (i, j), the Monge condition is already
satisfied; hence these edges are unnecessary.]

3. If there is no isolated node, stop. No Monge sequence exists.

Successful termination occurs when all the nodes have been sequenced in the
iterative step.

PROPOSITION 4.1. The algorithm generates a Mange sequence if and only
if one exists.

Proof. The algorithm generates a sequence (R,, . . , R,) where every Ri
is a distinct pair of matrix indices. The sequence preserves the following
invariant conditions:

For every j = 1,. . . , 1, in every quadruple which includes
Rj but does not include R,,..., Rj_l, Ri is on the small
diagonal.

(C2)

But this is equivalent to the Monge condition (Cl). Hence if a full sequence

(R i,. . . , R,,) has been generated, then it is a Monge sequence.
We now want to prove that the failure of the algorithm implies the

nonexistence of a Monge sequence. Assume to the contrary that a Monge
sequence (S,, . . . , S,,) exists, but the algorithm stopped after the construction
of the subsequence R = (R 1,. . . , Rk). Let t be the smallest index such that

MONGESEQUENCES 675

s, E (RI,..., R, }. Since both S and R satisfy (CB), S, can be appended to R
while maintaining (C2). This is a contradiction to the maximality of R. w

NOTE. We have actually proved a somewhat stronger result. Define a
Monge subsequence as any sequence (R 1,. . . , R,) (possibly with 1 < mn)

satisfying (C2). We have proved that the algorithm generates a maximum
length Monge subsequence. We shall return to this point later.

PROPOSITION 4.2. The algorithm can be implemented in quadratic time
and linear space.

Proof The initialization phase requires scanning all quadruples, i.e.
0((mn)2) steps. The elimination of edges after an iteration which placed
(i, j) in the sequence requires scanning all quadruples containing an element
from row i and column j, and hence can be done in O(mn) steps per
iteration. The identification of an isolated node can also be done in 0(mn)
steps per iteration: Maintain a degree variable for each node which is
originally zero, and is updated whenever the degree increases (in the initial-
ization phase) or decreases (in the iterative phase). The additional work is
constant for each edge update. Finding a zero degree node can thus be done
by scanning the degree variables of all nodes which requires linear time. (This
part can indeed be done in constant time per node, by maintaining a queue
of the nodes of degree zero, but the improvement will not change the overall
complexity.) Since the total work per iteration is O(mn) steps and the
number of iterations is O(mn), we get the quadratic time bound.

In a straightforward implementation of the algorithm one would keep the
whole graph (vertices and edges), which requires quadratic space. Instead,
we can keep only the degree variables for each node without keeping the
edges explicitly, thereby reducing the space requirement to linear. The
updating of the degrees can be done after (i, j) has been sequenced by
recomputing for each pair ((i, k,),(k,, j)) whether an edge should have
connected them before (i, j) was placed and changing their degrees accord-
ingly. The recomputing requires constant time for each quadruple containing
(i, j) and hence linear time per iteration, and does not change the overall
time complexity. l

Even if the algorithm terminates with a Monge subsequence only, this
information may be quite useful in practice: As easily follows from Hoffman’s
arguments [lo], using the greedy algorithm with such subsequence produces
values for the corresponding variables which occur in some optimal solution.
Hence, their values can be fixed, and the resulting lower-dimensional problem
can be solved by standard techniques. That smaller problem cannot be solved

676 NOGA ALON ET AL.

greedily, but its size may have been drastically reduced from the original
problem size (since every element in the Monge sequence may eliminate up
to a full row or column from the problem).

5. A FASTER ALGORITHM

Henceforth, we assume that the cost matrix C is such that m 6 n.
For every pair of row indices, i and r, we construct a precedence uectar,

Pi,, = { p,, . . . , p, }, which represents a permutation of the column indices
satisfying

Let c^(i, r) = ciP, - c,~,.
Notice that Pi7 = (pi, . . . , p,) implies that Pr, = (p,, . , pl), so these

vectors can be created by sorting (T] 1’ t is s, each having size n, which can be

accomplished in 0(m2n log n) time.
From the proof in Observation 3.1, we see that Pzr gives an ordering of

the columns which provides a Monge sequence for C, when it is restricted to
rows i and r. In particular, it gives the order of elements in row i. The
following observation follows:

LEMMA 5.1. The element (i, j) can be placed first in II Monge sequence
for C if and only if column index j can be first in the precedence vectors P,r
for every r f i.

[Note: It is possible that, for some T, ?(i, r) = cis - c,,? for more than one
value of s, so there can be more than one possible first element in Pi,.]

The following data structures are to be used to make efficient the search
for an appropriate item to enter the sequence. For each row index i, create a
(0,l) matrix Bi, having m rows and n columns. These matrices will have the
property that Bi(r, s) is 1 if and only if, according to the order constraints
implied by rows i and r, (i, s) can be next in a Monge sequence. The
matrices Bi are initialized as follows:

Bi(i, j) = 1 for j=l,...,n,

B,(r, s) = 1 forr#i,andforallssuchthat cis-c,,=c^(i,r),

Bi(T,,s) = 0 otherwise.

MONGE SEQUENCES 677

In particular, for each B,, row r initially contains a 1 in the column(s)
corresponding to each possible first element in Pi,, r # i. (Row i is set for
convenience.)

In addition, create a matrix, DEGREE, with m rows and n columns, such
that DEGREE(i, j) is the number of l’s in column j of the matrix Bi.
DEGREE(~,S) will therefore be m if and only if, according to the order
constraints implied by all rows, (i, s) can be placed next. That is,

CLAIM 5.2. An element, say (i, j), can be placed first in a Monge
sequence for C ifand Only if DEGREE(i, j)= m. SO if DEGREE < m for euey
element, no Monge sequence exists.

The initialization of each row r in Bi, r # i, requires finding column
indices j such that cij - crj = c^(i, r), which can be accomplished in O(n)
time, so the total complexity of building B,, . . , B, is O(m%). Notice,
however, that work can be saved if the precedence vectors are referred to.
The precedence vectors will also be needed for the subsequent iterations
of the algorithm. Assigning DEGREE and finding a pair (i, j) with value m
can be done as a by-product of building and later updating the matrices
Bi, i = 1,. . . , m, by maintaining a queue of the entries (i, j) with
DEGREE(i,j)= m.

In the iterative phase of the algorithm, after having placed the pair (i, j)
in the sequence, we must insure that the set of conditions (Cl) which are
associated with items (i, s), s # j, and (r, j), r # i, which have yet to be
placed in the sequence, no longer involve (i, j). This is done as follows:

For each B,, r f i, if B,(i, j) = 0, set it to 1 and update DEGREE(r, j).
In each of the precedence vectors Pi,, r + i, remove element j. If this

results in an update to c^(i, r), i.e., if t, the first element in the revised vector,
is such that tit - crt is greater than the previous c^(i, r), then for t and each
other column index s such that ciS - c,~ = &(i, r), make the following changes:
If Bi(r, s) = 0, set it to 1 and update oEonEE(i, s).

LEMMA 5.3. An element, say (i, j), can be placed next in a Monge
sequence for c if and only if DEGREE(i, j) = m. SO if DEGREE -c m for every
element, there is no Monge sequence.

Proof. Notice that, by the construction of Bi, if Bi(r, j) = 1 for some
r # i, then either (r, j) is already in the sequence, or cij - crj = ?(i, r) $
c. - c,, for all s + j which have not been removed from the precedence
vzctor Pir [i.e., (i, s) which have not yet been placed in the sequence]. So if
DEGREE(i, j) = m, then for every (r, j) and (i, s) not yet in the sequence,
r # i, s # j, we have cij - crj < ciS - cTS, which is equivalent to condition

(Cl)*

678 NOGA ALON ET AL.

If, on the other hand, oEcnEE(i, j) < m, there is an r f i such that
Bi(r, j) = 0 [which indicates that (r, j) is not yet in the sequence]. Since row
r in Bi is representative of the precedence vector Pi,, we know that j is not a
possible first element in Pi* [or B,(r, j) would be 11. So there is some other
column index, s, such that (i, s) and (r, s) have not yet been placed in the
sequence, and cis - c,, = c^(i, r) < cij - clj indicating that condition (Cl) has
been violated; item (i, j) cannot be next in the sequence. [Note that (r, s)
indeed has not yet been placed, since otherwise condition (Cl) would have
been violated before.] n

By the time the iterative phase of the algorithm is complete, the following
operations have been performed. If C is such that a Monge sequence exists,
every one of the m x n items have been placed, each calling for a set of
updates to the precedence vectors P,r and the matrices B,.

When item (i, j) is added to the sequence, each B,, T # i, has no more
than one of its entries changed. So no more than 0(m2n) operations are
required, in total, for such updates. Updating Bi, however, requires consult-
ing each of Pil, Piz,. . ., Pi,.

If for P,;, say, the removal of column index j does not result in a change
to c^(i, i) then no update to row r^ in Bi is necessary. Note that this can be
checked in O(1) time by maintaining for each i and r the number of indices
j satisfying cij - c,~ = Z(i, r). If, on the other hand, there is a new value for
c*(i, i), then for each of the column indices t satisfying, tit - tit = c^(i, f), an
update to Bi(i, t) is necessary. If there are k such indices, they can be found
and treated in O(k) time. As in the matrices Bi no 1 is ever changed to 0, the
total time for operations of this kind is bounded by the total number of
entries in B,,..., B,, which is 0(m2n).

Hence, since the initialization phase requires 0(m2n log n) operations,
the total running time of the algorithm is 0(m2n log n). We have thus proved
the following:

THEOREM 5.4. The above algorithm generates a Monge sequence for an
m X n transportation cost matrix if and only if one exists. Its running time is
0(Tii% log 6) and its space requirement is 0(E2E), where E = min(m, n)
and 5 = max(m, n).

Note that for every fixed m, our algorithm works in time 0(n log n). It is
unlikely (in fact, not possible, under the comparison model) that this can be
improved, as one can easily produce, in time and space O(n), a sorting of the
n numbers a 1,. . . , an from any Monge sequence for the 2 x n matrix

a, ... a” 1 -a1 ... -a, ’

MONGE SEQUENCES 679

6. CONCLUDING REMARKS AND OPEN PROBLEMS

The above algorithm which detects and constructs Monge sequences can
be applied for three purposes:

(1) To help identify new families of greedily solvable transportation
problems. Various families of transportation problems for which Monge
sequences exist have been identified so far [2, 9, 10, 151. The main difficulty
in the identification of new such families of problems has been the discovery
of the Monge sequences, whereas the verification that these are indeed
Monge sequences is usually straightforward. Applying the above algorithm
makes the identification of new families a much easier task.

(2) To help solve-or partially solve-particular problems where the
costs are fixed but repeated solutions are required with varying supply and
demand vectors. This was elaborated on in Section 4.

(3) As a preliminary step towards solving any transportation problem.
Since the time complexity of the algorithm is better than that of the most
efficient solution techniques known to date (see [18]), its benefits come at
(essentially) no additional cost.

Once a Monge sequence has been identified by the algorithm, all the
subsequent computations with different supply and demand vectors can be
performed faster than by any standard transportation algorithm, using the
greedy algorithm with that sequence. In fact, the time for a subsequent
solution with a given pair of supply and demand vectors is optimal, since
reading the input will already require linear time by any algorithm which
relates to each instance separately. We suspect that our algorithm may detect
new, previously unnoticed Monge sequences in practical problems. This is
because such problems usually have highly structured cost matrices, and such
structure may allow for a “hidden”Monge sequence.

A question arises as to whether the generation of the solution, when the
Monge sequence is already known, can be done in sublinear time, with
appropriate efficient preparations. Reading the cost matrix requires mn
steps, but when repeated solutions are required with the same cost matrix
and only the supply and demand vectors vary, one can argue that the “fresh”
input size is m + n only. Since there exist optimal solutions which give
nonzero values to at most m + n variables, it is conceivable that an algorithm
which does not require the scanning of the whole Monge sequence exists.
This issue remains at this point an open question.

Helpful comments from Alan Hoffnan and two anonymous referees are
gratefully acknowledged. In particular, we thank one of the refmees for
bringing to OUT attention References [6] and 131.

680 NOGA ALON ET AL.

REFERENCES

10

11

12
13

14

15

16
17
18

19

R. K. Ahuja, J. B. Odin, C. Stein, and R. E. Tarjan, unpublished report.
E. R. Barnes and A. J. Hoffman, On transportation problems with upper bounds
on leading rectangles, SIAM J. Algebraic Discrete Methods 6(3):487-496 (1985).
R. Chandrasekaran, Recognition of GilmoreGomory traveling salesman problem,
Discrete Appl. Math. 14231-238 (1986).
G. Dantzig, Linear Programming and Extensions, Princeton U.P., Princeton,
N. J., 1963.
P. C. Gilmore and R. E. Gomory, Sequencing a one-state variable machine: A
solvable case of the traveling salesman problem, Oper. Res. 11:655-679 (1964).
P. C. Gilmore, E. L. Lawler, and D. B. Shmoys, Well-solved special cases, in The
Traveling Salesman Problem (E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan,
and D. B. Shmoys, Eds.), Wiley, Chichester, 1985, pp. 87-144.
G. Hadley, Linear Programming, Addison-Wesley, Reading, Mass., 1962.
F. L. Hitchcock, The distribution of a product from several sources to numerous
localities, J. Math. and Phys. 20:224-230 (1941).
D. S. Hochbaum and R. Shamir, Strongly Polynomial Algorithms for the High
Multiplicity Scheduling Problem, Tech. Rep. lOO/BS, Inst. of Computer Sci-
ences, Tel Aviv Univ., Apr. 1988.
A. J. Hoffman, On simple transportation problems, in Convexity; Proceedings of
Symposia in Pure Mathematics, Vol. 7 (V. Klee, Ed.)‘ Amer. Math. Sot., 1963,
pp. 317-327.
A. J. Hoffman, Some Greedy Ideas, Report, IBM T. J. Watson Research Center,
1979.
A. Hoffman, private communication, Aug. 1988.
L.@ntorovitch, On the translocation of masses, C. R. (Dokl.) Acud. Sci. URSS
37(7-8):199-201 (1942).
E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt,
Reinhart and Winston, 1976.
B. Lev, A noniterative algorithm for tridiagonal transportation problems and its
generalization, Oper. Res. 20: 109- 125 (1972).

G. Monge, D&b& et Remblai, Mtmoires de l’Acad8mie des Sciences, 1781.
J. B. Odin, private communication, June 1988.
J. B. Orlin, A faster strongly polynomial minimum cost flow algorithm, in
Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
ACM Press, New York, 1988, pp. 377-387.
C. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and
Complexity, Prentice-Hall, Englewood Cliffs, N.J., 1982.

Received 10 June 198s; finul manuscript accepted 3 @ctoher 1988

